and, in partitcular, of adding substantial concentrations of solvent lyate ion in certain solvolyses.9

(9) A related example is in methanolysis of isobornyl chloride and camphene hydrochloride, where addition of NaOCH3 does not increase over-all rate but shifts the result from mainly substitution to mainly elimination [P. Beltrame, C. A. Bunton, A. Dunlop, and D. Whittaker, J. Chem. Soc., 658 (1964)].

(10) National Institutes of Health Predoctoral Fellow, 1965-1966.

Arthur Diaz, M. Brookhart,¹⁰ S. Winstein

Contribution No. 1933, Department of Chemistry University of California, Los Angeles, California 90024 Received April 4, 1966

Structure of the Nonclassical 7-Norbornenyl Cation¹

Sir:

In this communication we return to the question of the structure and behavior of the 7-norbornenyl cation. The high rate (1011 times 7-norbornyl) and over-all retention of structure and configuration in the solvolysis of anti-7-norbornenyl p-toluenesulfonate² (I-OTs) were previously^{2a-c} accounted for on the basis of an intermediate nonclassical "bishomocyclopropenyl"2e cation II. This interpretation has been seriously questioned by Brown.³ Most recently,^{3b,c} he has formulated the intermediate as a rapidly equilibrating pair of "classical" tricyclic ions (IVab), and Deno has supported this formulation.⁴ We can now report the direct observation of cation II from both σ and π routes^{2d} and discuss further its structure and chemical behavior.

Much of the previous discussion of the 7-norbornenyl cation revolved around the nature of the observed products. Thus, in connection with structure IVab for the 7-norbornenyl cation, Brown^{3b,c} suggested that the tricyclic alcohol V-OH might well be the chief kinetic control product of neutral hydrolysis of I-OTs, but that it was not isolated because of instability toward the reaction conditions. In the case of methanolysis reported in the previous communication,2d where tricyclic V-OCH₃ is now available for control experiments, it is clear that methanol attack at C_2 of the cationic intermediate is very much less important than at C_7 . Kinetic control in neutral methanolysis of I-OTs yields 99.7% bicyclic I-OCH3 and 0.3% tricyclic V-OCH₃.

While the $C_2: C_7$ reactivity ratio is small for methanol. it is much more favorable with nucleophiles such as -BH4,^{2c,3c} -CN,^{5a} and -OCH3.^{2d} While Brown^{3c} found it difficult to rationalize substantial C2 attack on the basis of the nonclassical structure II, we^{2c} found it difficult to rationalize predominant C7 attack on a classical cation IV. In fact, all the previous and $\mathsf{present}^{2d}$ information on the gradations in $C_7\!:\!C_2$ product partitioning is well accommodated by the nonclassical formulation II.

Research was supported by the National Science Foundation.
 S. Winstein, et al., J. Am. Chem. Soc.: (a) 77, 4183 (1955); (b) 78, 592 (1956); (c) 85, 2324 (1963); (d) 88, 3133 (1966); (e) W. G. Woods, R. A. Carboni, and J. D. Roberts, *ibid.*, 78, 5653 (1956).

(3) (a) H. C. Brown, "Strained Carbonium Ions," Abstracts, 139th National Meeting of the American Chemical Society, St. Louis, Mo., March 21-30, 1961; (b) H. C. Brown, "Non-Classical Intermediates, Organic Reaction Mechanisms Conference, Brookhaven, N. Y Sept 5-8, 1962; (c) H. C. Brown and M. Bell, J. Am. Chem. Soc., 85, 2324 (1963).

(4) N. C. Deno, Progr. Phys. Org. Chem., 2, 159 (1964).
(5) (a) H. Tanida and Y. Hata, J. Org. Chem., 30, 977 (1965); (b)
H. Tanida, T. Tsuji, and T. Irie, J. Am. Chem. Soc., 88, 864 (1966).

Just as stereochemistry at C7 was previously^{2a-c} employed as an argument for the nonclassical structure II instead of the classical structure III, stereochemistry at C_2 (or C_3) can help us decide between structure II and a "classical" tricyclic ion IV. The usual stereoelectronic considerations predict endo nucleophilic attack at C_2 or C_3 of ion II; on the other hand, a mixture of endo and exo products, probably predominantly exo, would be expected from a "classical" tricyclic cation IV. The tricyclic ether product from methanolysis of I-OTs in the presence of 4 M NaOMe^{2d} was separated from I-OCH₃ by vapor phase chromatography, a ca. 97% pure fraction of V-OCH₃ being obtained. The nmr spectrum of this material was essentially identical with the one described by Tanida^{5b} for the product from hydrogenation of the tricyclic ether VI-OCH₃ from basic methanolysis of 7-norbornadienyl chloride. The $C_2 \alpha$ -proton signal appeared as a clean quartet with vicinal coupling constants (3.8 and 7.4 cps) appropriate for an endo-methoxyl group^{5b} (exo C₂ proton). No evidence of another C₂ α proton signal was visible even on 60 scans using a Varian C-1024 time-averaging computer (CAT).⁶ While further investigation is required to set a lower limit to the endo: exo ratio in the tricyclic ether, it is already clear that the latter is at least very predominantly endo (>97 %). Thus, C₂ or C₃ methoxide attack on II is quite highly stereospecific in the endo sense. This is true also of attack by -CN.5 Such endo specificity is also observed in C₂ or C₃ attack by -BH₄,^{7a} -AlH₄,^{7a} and -OCH₃^{5b} on the 7-norbornadienyl cation VII, an analog of II without the C5- and C6-endo-protons. Obviously, stereochemistry supports the nonclassical structures implied by II and VII.

medium⁸ at low temperatures by addition of a cold (-50°) CH₂Cl₂-CCl₄ solution of I-OH to a cold SO₂-SbF₅-FSO₃H mixture, followed by vibration and stirring in the cold. The light orange lower layer which separates is the SO₂-SbF₅-FSO₃H solution of the cation containing some CH₂Cl₂ useful as an internal

(6) The tricyclic ether fraction shows an additional methyl signal in the nmr spectrum, indicating ca. 3% of an impurity whose nature is still not clear.

(7) (a) P. R. Story, et al., J. Am. Chem. Soc.: (a) 88, 374 (1966);
83, 3347 (1961); (b) 84, 4876 (1962); 85, 3630 (1963).
(8) G. Olah, et al., ibid., 87, 2997 (1965).

standard for the nmr spectra. These could be recorded at temperatures between -60 and -35° .

The nmr spectrum of ion II is summarized in formula VIII, chemical shifts (relative to internal CH₂Cl₂ taken as τ 4.70) and apparent multiplicities being indicated. Integrations were in good agreement with the expected values, with only a slight disturbance from broad, unresolved signals at τ ca. 7 and 8 due to side products formed in amounts varying from run to run. These were even less troublesome with the 5,6-exodideuterio cation IX, derived from the corresponding labeled I-OH, which in turn was prepared by LiAlD₄ reduction of 7-norbornadienyl acetate.9 For cation IX, the endo- H_d proton signal is simplified to a singlet, making easier the separation of the disturbing signal in the integration of the spectrum in the H_d region. Coupling constants were estimated from proton and deuterium decoupling experiments on the deuterated ion at -60° (see IX).¹⁰

It was possible to store solutions of the cation II salt for long periods of time at liquid nitrogen temperatures. Quenching of such solutions in methanol gave rise to I-OCH₃ in greater than 50% yield. Cation II was also generated from tricyclic V-OCH₃ by the same method employed with I-OH. The same spectrum was obtained as from I-OH, except for somewhat more disturbance from side products. Also, a triplet methyl signal from the generated $CH_3OH_2^+$ species occurs in the region of the bridgehead H_b signal of cation II. This same methyl triplet and an accompanying OH_2 proton quartet are produced in control experiments using CH_3OH as substrate.

As regards chemical shifts and coupling constants, the 7-norbornenyl cation II is quite analogous to the 7-norbornadienyl ion VII, as may be seen from com-

(9) (a) B. Franzus and E. I. Snyder, J. Am. Chem. Soc., 87, 3423 (1965); (b) P. R. Story, J. Org. Chem., 26, 287 (1961). (10) Irradiation of H_b reduced the H_a signal to a doublet ($J_{ac} = 2.5$

(10) Irradiation of H_b reduced the H_a signal to a doublet $(J_{ac} = 2.5 \text{ cps})$ and the H_c signal to an ill-resolved triplet; irradiation of H_a also simplified the H_c signal to an ill-resolved triplet and the H_b signal became a doublet $(J_{bc} = 2.6 \text{ cps})$; irradiation of H_d simplifies the H_c signal to a pentuplet; with deuterium decoupling the H_d signal becomes a doublet with $J_{cd} = 0.8 \text{ cps}$, and irradiation of the H_c proton gives the H_a signal an $A_a X_2$ pattern with the separation between the two outer intense lines equal to 8.7 cps $(J_{ab} + J_{ab'})$.

paring VIII and IX with X^{7b} (VII-BF₄ in liquid SO₂, TMS as internal standard). As regards the protons on the three-center bonded carbon atoms, the H_c proton signal occurs at relatively high field relative to that of the H_a protons in both ions. While the nmr spectra alone do not give an unequivocal answer in favor of the nonclassical structures *vs.* equilibrating classical tricyclic ions such as IVab, they are perfectly consistent with nonclassical ions if we view the C₂-C₇-C₃ part of the structure as a distorted electron-deficient cyclopropane-like arrangement with positive charge considerably greater at C₂ and C₃ than at C₇.

Deno has viewed the 7-norbornenyl and 7-norbornadienyl cations as cyclopropylcarbonium ions and has formulated both species as equilibrating tricyclic ions such as IVab. Specifically in the case of the 7-norbornadienyl species, he has considered the C7 or Hc proton signal to be too far upfield for a nonclassical formulation and in accord with the tricyclic one. However, such a point of view makes too little allowance for the great variation in charge distribution which results from hybridization changes at individual carbon atoms of a bridged ion such as II. As we have discussed elsewhere,¹¹ the bridging carbon atom in a bridged ion, e.g., C_7 in II, has considerable tendency to rehybridize from sp² toward sp³. Such rehybridization increases the C₇ Coulomb integral as well as C_7-C_2 and C_7-C_3 orbital overlap. This leads to net stabilization of the bridged ion, and these very features of rehybridization at C_7 tend to diminish the charge on this atom.

If one considers the nmr spectra along with all of the chemical and stereochemical evidence discussed in this and the previous communication,^{2d} only a nonclassical formulation such as II for the 7-norbornenyl ion and one akin to VII for the 7-norbornadienyl species will account for all of the facts.¹²

Acknowledgment. We are grateful to Professor F. A. L. Anet for advice and assistance with the decoupling experiments.

(11) R. J. Piccolini and S. Winstein, Tetrahedron, 19, 423 (1963).

(12) Further support for a symmetrical disposition of C_7 with respect to C_2 and C_3 is provided by extended Hückel calculations [R. Hoffman, *J. Am. Chem. Soc.*, **86**, 1259 (1964)]. A symmetrical structure II is also suggested by comparison with its 7-benzonorbornenyl analog. With the latter system, Tanida has shown the accelerating effects of 4'- and 5'methoxyl groups to be additive. This indicates a symmetrical ionization transition state and, presumably, therefore, a symmetrical intermediate [H. Tanida, private communication; see J. Am. Chem. Soc., **86**, 4904 (1964)].

(13) National Institutes of Health Predoctoral Fellow, 1965-1966.

M. Brookhart,¹³ Arthur Diaz, S. Winstein Contribution No. 1934, Department of Chemistry University of California, Los Angeles, California 90024 Received April 4, 1966

Direct Observation of Norbornenyl Cations

Sir:

This communication reports the nmr spectra of the unsubstituted 7-norbornenyl cation (1), the 7-methyl (2) and 7-hydroxy (3) 7-norbornenyl cations, and the 2-hydroxy-2-norbornenyl cation (4). The importance of "homoallylic"¹ interactions in bicyclic systems such as 1, 5, and 6 has been evident from studies of rates and

(1) This word was coined [S. Winstein, H. M. Walborsky, and K. Schreiber, J. Am. Chem. Soc., 72, 5795 (1950)] to describe interaction between a double bond and a center separated by an intervening carbon atom.